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The effect of surface tension and viscosity forces on the rate of
collapse of a cavitation vapor bubble has been quantitatively esti-
mated. The results of corresponding computations of the cavity
collapse rate obtained by exact and approximate methods are com-
pared,

The radial motion of a spherical vapor bubble in an
incompressible fluid is described by the equation [1]
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If we assume that the effect of the surface tension
forces and viscosity can be neglected, we can easily
evaluate the first integral of the differential equation
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If we set C = 0 in Eq. (1), it can also be integrated
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The effect of the surface tension forces on the rate
of collapse of a cavitation bubble will be small if

1
D<3- (4)

As a result of an analysis and numerical integration
of Eq. (1), for the case D = 0 it has been shown [3-5]
that there is a crltlcal value of the initial radius R*
such that at R; < Ro the cavity collapse time becomes
infinitely large.

The viscosity effect is significant only at § <1
when the velocity of the cavity boundary is sufficiently
large. In this stage, relation (2) can be written ap-
proximately in the form

. 2
2 __
b= 3ps (5)

We substitute into the viscosity term of Eq. (1)
the value of the boundary velocity (5). In this case,
the role of the viscous stresses is exaggerated, since
the actual boundary velocity should be lower. Obvi-
ously, this applies only if condition (4) is satisfied.

In this case, integration of Eq. (1) leads to the resuilt
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When 8 < 1, so that B3 «1, expression (6) can be
simplified:
2

- [1+3D(1 —p)—2V6C(1—p13).

In the final stages of motion, when 8 <1, relation
(6) can be further simplified:

=
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Using relations (6), (7), and (8), we can compute
the velocity of the boundary of the collapsing cavity
in various stages of motion.
When D = 0, relation (8) takes the value

w2 —
P e 200 (9)
from which it follows that the effect of viscosity on

the collapse rate will be small if C < (2v6)"!. The
velocity vanishes if C = (2V6) !, In this case, the
value of the initial radius should approximately cor-
respond to the critical value Rj. With further increase
in the parameter C, relation (9) becomes meaningless,
since the velocity becomes an imaginary quantity.

For the collapse of a cavity in water under atmo-
spheric pressure, the exact value of the critical ini-
tial radius Rak =8+ 107 'm [4], and that calculated
from Eq. (9) is R =2+ 10~%m. The agreement is
quite satisfactory, indirect evidence of the accuracy
of the proposed solution. As was to be expected, ow-
ing to the exaggeration of the role of viscosity, the
critical radius is likewise overestimated.

It follows from (8) that a situation may exist in
which the investigated factors mutually compensate
each other,

3D—21 6C=0 (10)

and the boundary ve1001ty is given by the Rayleigh
solution [2]: K = 8 [2/(38%]7V/2 = 1.

It follows from (10) that, irrespective of the depen-
dence on the initial radius, the surface tension and
vigcosity forces mutually compensate each other if
the external pressure has the value

* oZp
— -2
po=2.34-10 el (11)

The effect of the investigated factors will be small
(K= 1)if

|3D—2V'6 C|« 1. (12)



Table 1
The Error A%

Po, kg -m?

Ro. m wo o | e [ taoe | e | ow | e
10—2 —3-10~% | —9.10—% ) —2.10-3 0 1.4.10—3% | 8.10-2 1
103 ~—~3.10—8 [-—-9.10—%|--2.10—2 0 1.4.10-2 | 8.10—1 10
10— —~3.10—2 | —9.10~% | —2.10—1 0 1.4.10—1 8
103 —3.10—1 |—9.10-! | —2 0 1.4 :

In this case, by means of a Taylor expansionexpres-—
sion (8) can be reduced to the form

K=5[2/@3p)] ™ =1+15D—V6C. (13)

It is convenient to refer the external pressure to
its equilibrium value given by relation (11), € = py/p’;
then pg = 2.34 - 10-%ec? pu‘z and the expression for
the error introduced by the action of the viscosity and
surface tension forces into the value of the boundary
velocity is given by the relation

A % = 6.4:10°* (pe Ro) ™ (1 —2"?). (14)

Interest is usually focused on cavitation in water
(0=75-10 kg m~!, p=10""kg - sec* m?,
p=10%kg - sec? - m™); in this particular case,

A % =8.5-10"5 (1 —e'?) (e Ry)L. (15)

The results of calculations based on (11) and (15)
are presented in Table 1.

The calculations show that the viscosity and sur-
face tension effects mutually compensate each other
under the conditions of cavity collapse most often
encountered in practice at a pressure close to atmo-
spheric. In these circumstances, irrespective of the
initial radius the error is close to zero.

At pressures above atmospherie, viscosity pre-
dominates, the velocity given by formula (2) is too
high, and the error quickly decreases with increase
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Fig. 1. Radius of a spherical bubble as a
function of time: 1—3) real liguid (C = 0,

D = 0); 4) ideal liquid (C =0, D = 0); 5-7)

viscous liquid (C # 0, D = 0): 1,7) pg = 10°

kg/m?% Ry =10"" m; 2, 6) py = 10° kg/m?,

Ro=10"m; 3, 5) po = 10* kg/m? Ry =8 -
107" m.

in pressure. At Ry = 107° m, the error is about 2%
in the range 10° <py <2+ 10*kg - m~2, '

At pressures below atmospheric, surface tension
predominates, the velocity calculated from (2) is
too low, and the error increases rapidly as the pres-—
sure falls, However, even at Ry = 1 mm and py = 102
kg + m~? the error is only 10%.

As a check we obtained a numerical solution of Eq.
(1) on an M-20 computer for water at four values of
Ry (1075 8+ 1077; 5+ 1078 and10™® m) and three
values of pg (103, 10* , and 10° ke - m‘g).

The calculations were made for three cases: neither
viscosity nor surface tension; viscosity only; viscosity
and surface tension combined.

The results for Ry = 8 - 10~'m were plotted in
the form of graphs of the dimensionless radius g and
velocity § of the cavity versus dimensionless time 7
(Figs. 1 and 2). The calculations established that, for
water, taking viscosity into account has little effect
on the dynamic characteristics of the cavity, except
for the unimportant case Ry < 8 - 107 m, which cor-
responds to C > 0.5. The total collapse time increases
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Fig. 2. Rate of collapse of a
spherical bubble as a function
of time. 1-3) real liquid (C =
= 0, D = 0); 4) ideal liguid

(C =0, D =0); 5=7) viscous
liquid (C = 0, D=10):1,7) py =
= 10% kg/m?, Ry = 107" m; 2, 6)
po = 10° kg/m?, Ry = 10" m; 3,
5) py = 10* kg/m?, Ry = 8- 1077

m. -
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Table 2
Comparison of Results of Approximate and Exact Solutions

Rq, m
o, kg/m® | B 07| 8.10"7 | 510 | 10~
K| k| & Kk | K k | & | K
0.8 1124 1103 | 4.48 4.26 2.01 1.98 1.59 1.58
10? 0.6 [13.0 | 8.4 4,70 4.27 2.09 2.4 1.64 1.63
0.2 |13.6 | 3.2 4.90 3.55 2.16 2.01 1.68 1.635
0.1 {13.6 | 0.86| 4.90 3.30 2.16 1.86 1.68 1.62
0.8 :13.643.156 1.59 1.63 1.12 1.135 1.06 | 1.065
0.6 | 3,721 2.78 | 1.62 1.58 1.12 1.135 1.06 1.07
10¢ 0.4 13.68|2.12] 1.60 1,52 1.12 1.110 1.06 1.06
0.2 | 345| 1.04 | 1.54 1.38 .11 1.106 1.05 1.05
0.1 |3.18 | 0.278 1.46 1.26 1.09 1.080 1.05 1.05
0.8 11.13| 1.815 1.01 1.06 1 1.03 1 1
0.6 | 1,05 | 1.160] 1.00 1.02 1 1.01 1 1
10 0.4 | 0,77 | 0.908] 0.975 1.00 1 1 1 1
0.2 Im | 0.525| 0.915 0.948 0.99 0.997 1 1
0.1 Im | 0.215; 0.87 0.91 0.98 0.987 | 099 |1

slightly. At Ry = 8 « 10~ m, the collapse time becomes
infinite, and the velocity infinitely small, which is
consistent with the results of [3—5].

When the surface tension forces are taken into
account, the total collapse time remains finite and
less than that calculated by Rayleigh [2] at all the
investigated values of the dimensionless viscosity
parameter.

For cavities with an initial radius Ry = 5 - 10~%m
at an above-atmospheric external pressure, the vis-
cosity and surface tension effects mutually compensate
each other.

Thus, qualitatively these conclusions correspond
to those that follow from the approximate solution of
the problem presented above.

The results of a comparison of the parameter K=
= B 121 — 8%/(38%)"1/2, calculated approximately (Ky)

and exactly (K,) are presented in Table 2. As was to
be expected, the agreement is satisfactory when the
dimensionless viscosity parameter C is less than
0.2.

NOTATION

B = R/R; is the dimensionless cavity radius; R is
the variable radius; Ry is the initial radius; éz dg/dr
is the dimensionless velocity; 8= d%8/d+? is the dimen-
sionless acceleration; 1 =1:/R(p0/p)1/2 is the dimension-
less time; t is the time; p is the density of the liquid;
po is the difference between the pressure at infinity
and the saturated vapor pressure; C = 4/Ry (pop)i/2 is’
the dimensionless viscosity parameter; D =0/Rgpy is
the dimensionless surface tension parameter; p is the
dynamic viscosity; o is the surface tension.
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